Chapter 6 Quadrilaterals

Section 5
Trapezoids and Kites

A trapezoid_is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the \qquad bases \qquad .

A trapezoid has two pairs of base angles For instance, in trapezoid $A B \overline{C D}, \angle D$ and $\angle C$ are one pair of base angles. The other pair is $<A$ and $<B$.

The nonparallel sides are the \qquad legs \qquad of the trapezoid.

If the legs of a trapezoid are congruent, then

the trapezoid is an \qquad isosceles trapezoid \qquad -

isosceles trapezoid

THEOREMS

THEOREM 6.14

If a trapezoid is isosceles, then each pair of base angles is congruent.

$$
\angle A \cong \angle B, \angle C \cong \angle D
$$

THEOREM 6.15

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.
$A B C D$ is an isosceles trapezoid.

THEOREM 6.16

A trapezoid is isosceles if and only if its diagonals are congruent.
$A B C D$ is isosceles if and only if $\overline{A C} \cong \overline{B D}$.

$A D \cong B C$

Example 1: Using Properties of Isosceles Trapezoids

PQRS is an isosceles trapezoid. Find $m<P, m<Q$, and $m<R$.

$$
\begin{aligned}
& m<R=50^{*} \\
& m<P=180-50=130^{*} \\
& m<Q=130^{*}
\end{aligned}
$$

Example 2: Using Properties of Trapezoids

Show that ABCD is a trapezoid.
\rightarrow find all 4 slopes \rightarrow show only 1 pair of sides is parallel

$$
\begin{aligned}
& A B \rightarrow \frac{0-5}{5-D} \rightarrow \frac{-5}{5} \rightarrow-1 \\
& B C \rightarrow \frac{5-7}{0-4} \rightarrow \frac{-2}{-4} \rightarrow \frac{1}{2} \\
& C D \rightarrow \frac{7-4}{4-7} \rightarrow \frac{3}{-3} \rightarrow-1 \\
& D A \rightarrow \frac{4-0}{7-5} \rightarrow \frac{4}{2} \rightarrow 2
\end{aligned}
$$

\qquad midsegment \qquad of a trapezoid is the segment that connects the midpoints of its legs. Theorem 6.17 is similar to the Midsegment Theorem for triangles.

THEOREM

theorem 6.17 Midsegment Theorem for Trapezoids

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

$$
\overline{M N}\|\overline{A D}, \overline{M N}\| \overline{B C}, M N=\frac{1}{2}(A D+B C)
$$

Example 3: Finding Midsegment Lengths of Trapezoids

A baker is making a cake like the one shown. The top layer has a diameter of 8 inches and the bottom layer has a diameter of 20 inches. How big should the middle layer be?

GOAL 2: Using Properties of Kites

A ___kite___ is a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent.

THEOREMS ABOUT KITES

THEOREM 6.18
If a quadrilateral is a kite, then its diagonals are perpendicular.

THEOREM 6.19

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

Example 4: Using the Diagonals of a Kite

$W X Y Z$ is a kite so the diagonals are perpendicular. You can use the Pythagorean Theorem to find the side lengths.

$$
\begin{aligned}
& W X=\sqrt{20^{2}+12^{2}} \approx 23.32 \\
& X Y=\sqrt{12^{2}+12^{2}} \approx 16.97
\end{aligned}
$$

Because $W X Y Z$ is a kite, $W Z=W X \approx 23.32$ and $Z Y=X Y \approx 16.97$.

Example 5: Angles of a Kite

Find $\mathrm{m}<\mathrm{G}$ and $\mathrm{m}<\mathrm{J}$ in the diagram at the right.

$$
\begin{aligned}
& 360-132-60=168 \\
& 168 / 2=84
\end{aligned}
$$

$$
m<J=m<G=84^{*}
$$

EXIT SLIP

