Chapter 6 Quadrilaterals

Section 5 Trapezoids and Kites

GOAL 1: Using Properties of Trapezoids

A ____trapezoid____ is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the ____bases____.

A trapezoid has two pairs of __base angles_. For instance, in trapezoid ABCD, <D and <C are one pair of base angles. The other pair is <A and <B.

The nonparallel sides are the ____legs___ of the trapezoid.

If the legs of a trapezoid are congruent, then the trapezoid is an ____isosceles trapezoid___.

THEOREMS

THEOREM 6.14

If a trapezoid is isosceles, then each pair of base angles is congruent.

$$\angle A \cong \angle B, \angle C \cong \angle D$$

THEOREM 6.15

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

ABCD is an isosceles trapezoid.

THEOREM 6.16

A trapezoid is isosceles if and only if its diagonals are congruent.

ABCD is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

Example 1: Using Properties of Isosceles Trapezoids

PQRS is an isosceles trapezoid. Find m<P, m<Q, and m<R.

$$m < R = 50*$$
 $m < P = 180 - 50 = 130*$
 $m < Q = 130*$

Example 2: Using Properties of Trapezoids

Show that ABCD is a trapezoid.

→ find all 4 slopes → show only 1 pair of sides

The _____midsegment____ of a trapezoid is the segment that connects the midpoints of its legs. Theorem 6.17 is similar to the Midsegment Theorem for triangles.

THEOREM

THEOREM 6.17 Midsegment Theorem for Trapezoids

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

$$\overline{MN} \parallel \overline{AD}, \overline{MN} \parallel \overline{BC}, MN = \frac{1}{2}(AD + BC)$$

Example 3: Finding Midsegment Lengths of Trapezoids

A baker is making a cake like the one shown. The top layer has a diameter of 8 inches and the bottom layer has a diameter of 20 inches. How big should the middle layer be?

$$\frac{1}{2}(8+20)$$
 $\frac{1}{2}(28)$
 $\frac{1}{2}(14)$

GOAL 2: Using Properties of Kites

A ___kite___ is a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent.

THEOREMS ABOUT KITES

THEOREM 6.18

If a quadrilateral is a kite, then its diagonals are perpendicular.

THEOREM 6.19

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

Example 4: Using the Diagonals of a Kite

WXYZ is a kite so the diagonals are perpendicular. You can use the Pythagorean Theorem to find the side lengths.

$$WX = \sqrt{20^2 + 12^2} \approx 23.32$$

$$XY = \sqrt{12^2 + 12^2} \approx 16.97$$

 $W = \begin{bmatrix} 12 \\ 0 \\ 12 \end{bmatrix}$

Because WXYZ is a kite, $WZ = WX \approx 23.32$ and $ZY = XY \approx 16.97$.

Example 5: Angles of a Kite

Find m<G and m<J in the diagram at the right.

$$360 - 132 - 60 = 168$$

$$168/2 = 84$$

$$m < J = m < G = 84*$$

EXIT SLIP